Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
BMC Bioinformatics ; 23(1): 551, 2022 Dec 19.
Article in English | MEDLINE | ID: covidwho-2196035

ABSTRACT

BACKGROUND: The genomes of SARS-CoV-2 are classified into variants, some of which are monitored as variants of concern (e.g. the Delta variant B.1.617.2 or Omicron variant B.1.1.529). Proportions of these variants circulating in a human population are typically estimated by large-scale sequencing of individual patient samples. Sequencing a mixture of SARS-CoV-2 RNA molecules from wastewater provides a cost-effective alternative, but requires methods for estimating variant proportions in a mixed sample. RESULTS: We propose a new method based on a probabilistic model of sequencing reads, capturing sequence diversity present within individual variants, as well as sequencing errors. The algorithm is implemented in an open source Python program called VirPool. We evaluate the accuracy of VirPool on several simulated and real sequencing data sets from both Illumina and nanopore sequencing platforms, including wastewater samples from Austria and France monitoring the onset of the Alpha variant. CONCLUSIONS: VirPool is a versatile tool for wastewater and other mixed-sample analysis that can handle both short- and long-read sequencing data. Our approach does not require pre-selection of characteristic mutations for variant profiles, it is able to use the entire length of reads instead of just the most informative positions, and can also capture haplotype dependencies within a single read.


Subject(s)
COVID-19 , SARS-CoV-2 , Wastewater , Humans , RNA, Viral , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Wastewater/virology
2.
J Med Internet Res ; 23(2): e24266, 2021 02 22.
Article in English | MEDLINE | ID: covidwho-1574391

ABSTRACT

BACKGROUND: Transition to digital pathology usually takes months or years to be completed. We were familiarizing ourselves with digital pathology solutions at the time when the COVID-19 outbreak forced us to embark on an abrupt transition to digital pathology. OBJECTIVE: The aim of this study was to quantitatively describe how the abrupt transition to digital pathology might affect the quality of diagnoses, model possible causes by probabilistic modeling, and qualitatively gauge the perception of this abrupt transition. METHODS: A total of 17 pathologists and residents participated in this study; these participants reviewed 25 additional test cases from the archives and completed a final psychologic survey. For each case, participants performed several different diagnostic tasks, and their results were recorded and compared with the original diagnoses performed using the gold standard method (ie, conventional microscopy). We performed Bayesian data analysis with probabilistic modeling. RESULTS: The overall analysis, comprising 1345 different items, resulted in a 9% (117/1345) error rate in using digital slides. The task of differentiating a neoplastic process from a nonneoplastic one accounted for an error rate of 10.7% (42/392), whereas the distinction of a malignant process from a benign one accounted for an error rate of 4.2% (11/258). Apart from residents, senior pathologists generated most discrepancies (7.9%, 13/164). Our model showed that these differences among career levels persisted even after adjusting for other factors. CONCLUSIONS: Our findings are in line with previous findings, emphasizing that the duration of transition (ie, lengthy or abrupt) might not influence the diagnostic performance. Moreover, our findings highlight that senior pathologists may be limited by a digital gap, which may negatively affect their performance with digital pathology. These results can guide the process of digital transition in the field of pathology.


Subject(s)
COVID-19/epidemiology , Clinical Competence , Diagnostic Imaging/methods , Diagnostic Imaging/standards , Image Processing, Computer-Assisted/methods , Image Processing, Computer-Assisted/standards , Pathology, Clinical/methods , Pathology, Clinical/standards , Bayes Theorem , Disease Outbreaks , Humans , Internship and Residency/methods , Internship and Residency/standards , Italy/epidemiology , Microscopy , Surveys and Questionnaires
3.
SSRN ; : 3581857, 2020 May 05.
Article in English | MEDLINE | ID: covidwho-679343

ABSTRACT

COVID-19 (Coronavirus disease 2019) is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While the pathophysiology of this deadly virus is complex and largely unknown, we employ a network biology-fueled approach and integrate multiomics data pertaining to lung epithelial cells-specific co-expression network and human interactome to generate Calu-3-specific human-SARS-CoV-2 Interactome (CSI). Topological clustering and pathway enrichment analysis show that SARS-CoV-2 target central nodes of host-viral network that participate in core functional pathways. Network centrality analyses discover 28 high-value SARS-CoV-2 targets, which are possibly involved in viral entry, proliferation and survival to establish infection and facilitate disease progression. Our probabilistic modeling framework elucidates critical regulatory circuitry and molecular events pertinent to COVID-19, particularly the host modifying responses and cytokine storm. Overall, our network centric analyses reveal novel molecular components, uncover structural and functional modules, and provide molecular insights into SARS-CoV-2 pathogenicity that may foster effective therapeutic design. Funding: This work was supported by the National Science Foundation (IOS-1557796) to M.S.M., and U54 ES 030246 from NIH/NIEHS to M. A. Conflict of Interest: The authors declare no competing interests. The authors also declare no financial interests.

SELECTION OF CITATIONS
SEARCH DETAIL